Univariate mean change point detection: Penalization, cusum and optimality D Wang, Y Yu, A Rinaldo | 87 | 2020 |
Optimal change point detection and localization in sparse dynamic networks D Wang, Y Yu, A Rinaldo | 78 | 2021 |
Optimal covariance change point localization in high dimensions D Wang, Y Yu, A Rinaldo | 75* | 2021 |
Statistical analysis of persistence intensity functions YC Chen, D Wang, A Rinaldo, L Wasserman arXiv preprint arXiv:1510.02502, 2015 | 50 | 2015 |
Optimal nonparametric change point analysis OH Madrid Padilla, Y Yu, D Wang, A Rinaldo | 37* | 2021 |
Optimal nonparametric multivariate change point detection and localization OHM Padilla, Y Yu, D Wang, A Rinaldo IEEE Transactions on Information Theory 68 (3), 1922-1944, 2021 | 34 | 2021 |
Statistically and computationally efficient change point localization in regression settings D Wang, Z Zhao, KZ Lin, R Willett The Journal of Machine Learning Research 22 (1), 11255-11300, 2021 | 33 | 2021 |
Dbscan: Optimal rates for density-based cluster estimation D Wang, X Lu, A Rinaldo Journal of machine learning research, 2019 | 31* | 2019 |
Localizing changes in high-dimensional vector autoregressive processes D Wang, Y Yu, A Rinaldo, R Willett arXiv preprint arXiv:1909.06359, 2019 | 29 | 2019 |
Localizing changes in high-dimensional regression models A Rinaldo, D Wang, Q Wen, R Willett, Y Yu International Conference on Artificial Intelligence and Statistics, 2089-2097, 2021 | 27* | 2021 |
A note on online change point detection Y Yu, OH Madrid Padilla, D Wang, A Rinaldo Sequential Analysis, 1-34, 2023 | 17 | 2023 |
Optimal network online change point localisation Y Yu, OHM Padilla, D Wang, A Rinaldo arXiv preprint arXiv:2101.05477, 2021 | 12 | 2021 |
Nonparametric clustering of functional data using pseudo-densities M Ciollaro, CR Genovese, D Wang | 11 | 2016 |
Change point inference in high-dimensional regression models under temporal dependence H Xu, D Wang, Z Zhao, Y Yu arXiv preprint arXiv:2207.12453, 2022 | 8 | 2022 |
Functional linear regression with mixed predictors D Wang, Z Zhao, Y Yu, R Willett The Journal of Machine Learning Research 23 (1), 12181-12274, 2022 | 7 | 2022 |
Optimal change-point testing for high-dimensional linear models with temporal dependence D Wang, Z Zhao arXiv preprint arXiv:2205.03880, 2022 | 6 | 2022 |
Detecting abrupt changes in high-dimensional self-exciting poisson processes D Wang, Y Yu, R Willett arXiv preprint arXiv:2006.03572, 2020 | 6 | 2020 |
Functional autoregressive processes in reproducing kernel hilbert spaces D Wang, Z Zhao, R Willett, CY Yau arXiv preprint arXiv:2011.13993, 2020 | 5 | 2020 |
Numerical approximation of viscoelastic fluids L Perrotti, NJ Walkington, D Wang ESAIM: Mathematical Modelling and Numerical Analysis 51 (3), 1119-1144, 2017 | 5* | 2017 |
Detecting abrupt changes in sequential pairwise comparison data W Li, A Rinaldo, D Wang Advances in Neural Information Processing Systems 35, 37851-37864, 2022 | 2 | 2022 |