A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms L Gosse Computers & Mathematics with Applications 39 (9-10), 135-159, 2000 | 231 | 2000 |

A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms L Gosse Mathematical Models and Methods in Applied Sciences 11 (02), 339-365, 2001 | 174 | 2001 |

An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations L Gosse, G Toscani Comptes Rendus Mathematique 334 (4), 337-342, 2002 | 171 | 2002 |

Computing qualitatively correct approximations of balance laws L Gosse SIMAI Springer Series 2, 2013 | 166 | 2013 |

Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients L Gosse, F James Mathematics of Computation 69 (231), 987-1015, 2000 | 88 | 2000 |

Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws D Amadori, L Gosse, G Guerra Archive for rational mechanics and analysis 162 (4), 327-366, 2002 | 86 | 2002 |

Space localization and well-balanced schemes for discrete kinetic models in diffusive regimes L Gosse, G Toscani SIAM journal on numerical analysis 41 (2), 641-658, 2003 | 83 | 2003 |

Two moment systems for computing multiphase semiclassical limits of the Schrödinger equation L Gosse, S Jin, X Li Mathematical Models and Methods in Applied Sciences 13 (12), 1689-1723, 2003 | 70 | 2003 |

Identification of asymptotic decay to self-similarity for one-dimensional filtration equations L Gosse, G Toscani SIAM Journal on Numerical Analysis 43 (6), 2590-2606, 2006 | 69 | 2006 |

Asymptotic-preserving & well-balanced schemes for radiative transfer and the Rosseland approximation L Gosse, G Toscani Numerische Mathematik 98 (2), 223-250, 2004 | 64 | 2004 |

Un schéma-équilibre adapté aux lois de conservation scalaires non-homogènes L Gosse, AY Leroux CR Acad. Sci. Paris Sér. I Math 323 (5), 543-546, 1996 | 61 | 1996 |

A well-balanced scheme designed for inhomogeneous scalar conservation laws L Gosse, AY Leroux Comptes Rendus De L Academie Des Sciences Serie I-mathematique 323 (5), 543-546, 1996 | 59 | 1996 |

Localization effects and measure source terms in numerical schemes for balance laws L Gosse Mathematics of computation 71 (238), 553-582, 2002 | 58 | 2002 |

Lagrangian numerical approximations to one-dimensional convolution-diffusion equations L Gosse, G Toscani SIAM Journal on Scientific Computing 28 (4), 1203-1227, 2006 | 57 | 2006 |

Using K-branch entropy solutions for multivalued geometric optics computations L Gosse Journal of Computational Physics 180 (1), 155-182, 2002 | 54 | 2002 |

Godunov-type approximation for a general resonant balance law with large data D Amadori, L Gosse, G Guerra Journal of Differential Equations 198 (2), 233-274, 2004 | 42 | 2004 |

Two a posteriori error estimates for one-dimensional scalar conservation laws L Gosse, C Makridakis SIAM journal on numerical analysis 38 (3), 964-988, 2000 | 39 | 2000 |

Asymptotic-preserving and well-balanced schemes for the 1D Cattaneo model of chemotaxis movement in both hyperbolic and diffusive regimes L Gosse Journal of Mathematical Analysis and Applications 388 (2), 964-983, 2012 | 37 | 2012 |

Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice–III. From ab initio models to WKB for Schrödinger–Poisson L Gosse, NJ Mauser Journal of Computational Physics 211 (1), 326-346, 2006 | 36 | 2006 |

Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice: I. homogeneous problems L Gosse, PA Markowich Journal of Computational Physics 197 (2), 387-417, 2004 | 34 | 2004 |