A proof of Dejean’s conjecture J Currie, N Rampersad Mathematics of Computation 80 (274), 1063-1070, 2011 | 95 | 2011 |

Periodicity, repetitions, and orbits of an automatic sequence JP Allouche, N Rampersad, J Shallit Theoretical Computer Science 410 (30-32), 2795-2803, 2009 | 69 | 2009 |

Enumeration and decidable properties of automatic sequences É Charlier, N Rampersad, J Shallit International Journal of Foundations of Computer Science 23 (05), 1035-1066, 2012 | 68 | 2012 |

Avoiding large squares in infinite binary words N Rampersad, J Shallit, M Wang Theoretical Computer Science 339 (1), 19-34, 2005 | 57 | 2005 |

On NFAs where all states are final, initial, or both JY Kao, N Rampersad, J Shallit Theoretical Computer Science 410 (47-49), 5010-5021, 2009 | 53 | 2009 |

The state complexity of L2 and Lk N Rampersad Information Processing Letters 98 (6), 231-234, 2006 | 48 | 2006 |

The abelian complexity of the paperfolding word B Madill, N Rampersad Discrete Mathematics 313 (7), 831-838, 2013 | 45 | 2013 |

The computational complexity of universality problems for prefixes, suffixes, factors, and subwords of regular languages N Rampersad, J Shallit, Z Xu fundamenta informaticae 116 (1-4), 223-236, 2012 | 35 | 2012 |

Dejean's conjecture holds for n≥ 27 J Currie, N Rampersad RAIRO-Theoretical Informatics and Applications 43 (4), 775-778, 2009 | 34 | 2009 |

Dejean's conjecture holds for n>= 30 J Currie, N Rampersad arXiv preprint arXiv:0806.0043, 2008 | 32 | 2008 |

Finding the growth rate of a regular or context-free language in polynomial time P Gawrychowski, D Krieger, N Rampersad, J Shallit International Journal of Foundations of Computer Science 21 (04), 597-618, 2010 | 28 | 2010 |

The number of ternary words avoiding abelian cubes grows exponentially. A Aberkane, JD Currie, N Rampersad Journal of Integer Sequences [electronic only] 7 (2), currie18. pdf, 2004 | 27 | 2004 |

Recurrent words with constant Abelian complexity J Currie, N Rampersad arXiv preprint arXiv:0911.5151, 2009 | 26 | 2009 |

Abelian complexity of fixed point of morphism 0↦ 012, 1↦ 02, 2↦ 1 F Blanchet-Sadri, JD Currie, N Rampersad, N Fox Integers, 2014 | 21 | 2014 |

Shuffling and unshuffling D Henshall, N Rampersad, J Shallit arXiv preprint arXiv:1106.5767, 2011 | 21 | 2011 |

Finding the growth rate of a regular of context-free language in polynomial time P Gawrychowski, D Krieger, N Rampersad, J Shallit International Conference on Developments in Language Theory, 339-358, 2008 | 21 | 2008 |

Further applications of a power series method for pattern avoidance N Rampersad arXiv preprint arXiv:0907.4667, 2009 | 20 | 2009 |

Decimations of languages and state complexity D Krieger, A Miller, N Rampersad, B Ravikumar, J Shallit Theoretical computer science 410 (24-25), 2401-2409, 2009 | 20 | 2009 |

Critical exponents of infinite balanced words N Rampersad, J Shallit, É Vandomme Theoretical Computer Science 777, 454-463, 2019 | 19 | 2019 |

Fixed points avoiding Abelian k-powers JD Currie, N Rampersad Journal of Combinatorial Theory, Series A 119 (5), 942-948, 2012 | 19 | 2012 |