Highly accurate protein structure prediction with AlphaFold J Jumper, R Evans, A Pritzel, T Green, M Figurnov, O Ronneberger, ... nature 596 (7873), 583-589, 2021 | 27455 | 2021 |
Relational inductive biases, deep learning, and graph networks PW Battaglia, JB Hamrick, V Bapst, A Sanchez-Gonzalez, V Zambaldi, ... arXiv preprint arXiv:1806.01261, 2018 | 3820 | 2018 |
Highly accurate protein structure prediction for the human proteome K Tunyasuvunakool, J Adler, Z Wu, T Green, M Zielinski, A Žídek, ... Nature 596 (7873), 590-596, 2021 | 2294 | 2021 |
Learning to navigate in complex environments P Mirowski, R Pascanu, F Viola, H Soyer, AJ Ballard, A Banino, M Denil, ... arXiv preprint arXiv:1611.03673, 2016 | 997 | 2016 |
Accurate structure prediction of biomolecular interactions with AlphaFold 3 J Abramson, J Adler, J Dunger, R Evans, T Green, A Pritzel, ... Nature, 1-3, 2024 | 853 | 2024 |
Applying and improving AlphaFold at CASP14 J Jumper, R Evans, A Pritzel, T Green, M Figurnov, O Ronneberger, ... Proteins: Structure, Function, and Bioinformatics 89 (12), 1711-1721, 2021 | 315 | 2021 |
High accuracy protein structure prediction using deep learning J Jumper, R Evans, A Pritzel, T Green, M Figurnov, K Tunyasuvunakool, ... Fourteenth critical assessment of techniques for protein structure …, 2020 | 228* | 2020 |
Relational inductive biases, deep learning, and graph networks. arXiv 2018 PW Battaglia, JB Hamrick, V Bapst, A Sanchez-Gonzalez, V Zambaldi, ... arXiv preprint arXiv:1806.01261, 2018 | 214 | 2018 |
Energy landscapes for machine learning AJ Ballard, R Das, S Martiniani, D Mehta, L Sagun, JD Stevenson, ... Physical Chemistry Chemical Physics 19 (20), 12585-12603, 2017 | 124 | 2017 |
Increased tolerance to oxygen and glucose deprivation in astrocytes from Na+/H+ exchanger isoform 1 null mice DB Kintner, G Su, B Lenart, AJ Ballard, JW Meyer, LL Ng, GE Shull, D Sun American Journal of Physiology-Cell Physiology 287 (1), C12-C21, 2004 | 121 | 2004 |
Intrinsically disordered energy landscapes Y Chebaro, AJ Ballard, D Chakraborty, DJ Wales Scientific reports 5 (1), 10386, 2015 | 110 | 2015 |
Targeted free energy estimation via learned mappings P Wirnsberger, AJ Ballard, G Papamakarios, S Abercrombie, S Racanière, ... The Journal of Chemical Physics 153 (14), 2020 | 81 | 2020 |
Role of Na+-K+-Cl− cotransport and Na+/Ca2+ exchange in mitochondrial dysfunction in astrocytes following in vitro ischemia DB Kintner, J Luo, J Gerdts, AJ Ballard, GE Shull, D Sun American Journal of Physiology-Cell Physiology 292 (3), C1113-C1122, 2007 | 77 | 2007 |
Metacontrol for adaptive imagination-based optimization JB Hamrick, AJ Ballard, R Pascanu, O Vinyals, N Heess, PW Battaglia arXiv preprint arXiv:1705.02670, 2017 | 76 | 2017 |
Replica exchange with nonequilibrium switches AJ Ballard, C Jarzynski Proceedings of the National Academy of Sciences 106 (30), 12224-12229, 2009 | 69 | 2009 |
Toward the mechanism of ionic dissociation in water AJ Ballard, C Dellago The Journal of Physical Chemistry B 116 (45), 13490-13497, 2012 | 66 | 2012 |
This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J J Jumper, R Evans, A Pritzel, T Green, M Figurnov, O Ronneberger, ... Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M …, 2021 | 65 | 2021 |
Unsupervised doodling and painting with improved spiral JFJ Mellor, E Park, Y Ganin, I Babuschkin, T Kulkarni, D Rosenbaum, ... arXiv preprint arXiv:1910.01007, 2019 | 52 | 2019 |
Rapid training of deep neural networks without skip connections or normalization layers using deep kernel shaping J Martens, A Ballard, G Desjardins, G Swirszcz, V Dalibard, ... arXiv preprint arXiv:2110.01765, 2021 | 51 | 2021 |
Normalizing flows for atomic solids P Wirnsberger, G Papamakarios, B Ibarz, S Racaniere, AJ Ballard, ... Machine Learning: Science and Technology 3 (2), 025009, 2022 | 41 | 2022 |