Παρακολούθηση
Georgia A Papacharalampous
Georgia A Papacharalampous
Researcher at the Czech University of Life Sciences Prague
Η διεύθυνση ηλεκτρονικού ταχυδρομείου έχει επαληθευτεί στον τομέα hydro.ntua.gr - Αρχική σελίδα
Τίτλος
Παρατίθεται από
Παρατίθεται από
Έτος
Twenty-three Unsolved Problems in Hydrology (UPH)–a community perspective
G Blöschl, MFP Bierkens, A Chambel, C Cudennec, G Destouni, A Fiori, ...
Hydrological Sciences Journal 64 (10), 1141–1158, 2019
3602019
A brief review of random forests for water scientists and practitioners and their recent history in water resources
H Tyralis, G Papacharalampous, A Langousis
Water 11 (5), 910, 2019
223*2019
Variable Selection in Time Series Forecasting Using Random Forests
H Tyralis, G Papacharalampous
Algorithms 10 (4), 114, 2017
1322017
Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes
GA Papacharalampous, H Tyralis, D Koutsoyiannis
Stochastic Environmental Research and Risk Assessment 33 (2), 481–514, 2019
1112019
Predictability of monthly temperature and precipitation using automatic time series forecasting methods
G Papacharalampous, H Tyralis, D Koutsoyiannis
Acta Geophysica 66 (4), 807–831, 2018
962018
Evaluation of random forests and Prophet for daily streamflow forecasting
GA Papacharalampous, H Tyralis
Advances in Geosciences 45, 201–208, 2018
53*2018
Hydrological post-processing using stacked generalization of quantile regression algorithms: Large-scale application over CONUS
H Tyralis, GA Papacharalampous, A Burnetas, A Langousis
Journal of Hydrology 577, 123957, 2019
512019
Univariate time series forecasting of temperature and precipitation with a focus on machine learning algorithms: A multiple-case study from Greece
G Papacharalampous, H Tyralis, D Koutsoyiannis
Water Resources Management 32 (15), 5207–5239, 2018
502018
Probabilistic hydrological post-processing at scale: Why and how to apply machine-learning quantile regression algorithms
G Papacharalampous, H Tyralis, A Langousis, AW Jayawardena, ...
Water 11 (10), 2126, 2019
452019
Super ensemble learning for daily streamflow forecasting: Large-scale demonstration and comparison with multiple machine learning algorithms
H Tyralis, G Papacharalampous, A Langousis
Neural Computing and Applications, 1-16, 2020
442020
One-step ahead forecasting of geophysical processes within a purely statistical framework
G Papacharalampous, H Tyralis, D Koutsoyiannis
Geoscience Letters 5 (1), 12, 2018
38*2018
How to explain and predict the shape parameter of the generalized extreme value distribution of streamflow extremes using a big dataset
H Tyralis, G Papacharalampous, S Tantanee
Journal of Hydrology 574, 628–645, 2019
352019
Quantification of predictive uncertainty in hydrological modelling by harnessing the wisdom of the crowd: A large-sample experiment at monthly timescale
G Papacharalampous, H Tyralis, D Koutsoyiannis, A Montanari
Advances in Water Resources 136, 103470, 2020
272020
Global-scale massive feature extraction from monthly hydroclimatic time series: Statistical characterizations, spatial patterns and hydrological similarity
G Papacharalampous, H Tyralis, SM Papalexiou, A Langousis, S Khatami, ...
Science of The Total Environment 767, 144612, 2021
222021
Large-scale assessment of Prophet for multi-step ahead forecasting of monthly streamflow
H Tyralis, GA Papacharalampous
Advances in Geosciences 45, 147–153, 2018
212018
Hydrological time series forecasting using simple combinations: Big data testing and investigations on one-year ahead river flow predictability
G Papacharalampous, H Tyralis
Journal of Hydrology 590, 125205, 2020
192020
Quantification of predictive uncertainty in hydrological modelling by harnessing the wisdom of the crowd: Methodology development and investigation using toy models
G Papacharalampous, D Koutsoyiannis, A Montanari
Advances in Water Resources 136, 103471, 2020
192020
Forecasting of geophysical processes using stochastic and machine learning algorithms
GA Papacharalampous, H Tyralis, D Koutsoyiannis
European Water, 161–168, 2017
192017
Boosting algorithms in energy research: A systematic review
H Tyralis, G Papacharalampous
Neural Computing and Applications 33 (21), 14101-14117, 2021
162021
Error evolution in multi-step ahead streamflow forecasting for the operation of hydropower reservoirs
G Papacharalampous, H Tyralis, D Koutsoyiannis
Preprints, 2017
10*2017
Δεν είναι δυνατή η εκτέλεση της ενέργειας από το σύστημα αυτή τη στιγμή. Προσπαθήστε ξανά αργότερα.
Άρθρα 1–20