A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model H Duminil-Copin, V Tassion Communications in Mathematical Physics 343 (2), 725-745, 2016 | 139 | 2016 |

Sharp phase transition for the random-cluster and Potts models via decision trees H Duminil-Copin, A Raoufi, V Tassion Annals of Mathematics 189 (1), 75-99, 2019 | 133 | 2019 |

Continuity of the Phase Transition for Planar Random-Cluster and Potts Models with 1 ≤ q ≤ 4 H Duminil-Copin, V Sidoravicius, V Tassion Communications in Mathematical Physics 349 (1), 47-107, 2017 | 111 | 2017 |

Crossing probabilities for Voronoi percolation V Tassion The Annals of Probability 44 (5), 3385-3398, 2016 | 85 | 2016 |

Discontinuity of the phase transition for the planar random-cluster and Potts models with H Duminil-Copin, M Gagnebin, M Harel, I Manolescu, V Tassion arXiv preprint arXiv:1611.09877, 2016 | 70 | 2016 |

A new proof of the sharpness of the phase transition for Bernoulli percolation on H Duminil-Copin, V Tassion L’Enseignement mathématique 62 (1), 199-206, 2017 | 50 | 2017 |

Sharpness of the phase transition for continuum percolation in R 2 D Ahlberg, V Tassion, A Teixeira Probability Theory and Related Fields 172 (1), 525-581, 2018 | 48 | 2018 |

Exponential decay of connection probabilities for subcritical Voronoi percolation in R d H Duminil-Copin, A Raoufi, V Tassion Probability Theory and Related Fields 173 (1), 479-490, 2019 | 45 | 2019 |

A new computation of the critical point for the planar random-cluster model with H Duminil-Copin, A Raoufi, V Tassion Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 54 (1 …, 2018 | 31 | 2018 |

Absence of infinite cluster for critical Bernoulli percolation on slabs H Duminil, V Sidoravicius, V Tassion Communications on Pure and Applied Mathematics 69 (7), 1397-1411, 2016 | 29 | 2016 |

Quenched voronoi percolation D Ahlberg, S Griffiths, R Morris, V Tassion Advances in Mathematics 286, 889-911, 2016 | 29 | 2016 |

Locality of percolation for abelian Cayley graphs S Martineau, V Tassion The Annals of Probability, 1247-1277, 2017 | 27 | 2017 |

Emergent planarity in two-dimensional Ising models with finite-range interactions M Aizenman, H Duminil-Copin, V Tassion, S Warzel Inventiones mathematicae 216 (3), 661-743, 2019 | 25 | 2019 |

Subcritical phase of -dimensional Poisson-Boolean percolation and its vacant set H Duminil-Copin, A Raoufi, V Tassion arXiv preprint arXiv:1805.00695, 2018 | 25 | 2018 |

Subcritical phase of -dimensional Poisson–Boolean percolation and its vacant set H Duminil-Copin, A Raoufi, V Tassion Annales Henri Lebesgue 3, 677-700, 2020 | 22 | 2020 |

The Bethe ansatz for the six-vertex and XXZ models: An exposition H Duminil-Copin, M Gagnebin, M Harel, I Manolescu, V Tassion Probability Surveys 15, 102-130, 2018 | 18 | 2018 |

Planar random-cluster model: fractal properties of the critical phase H Duminil-Copin, I Manolescu, V Tassion Probability Theory and Related Fields 181 (1), 401-449, 2021 | 17 | 2021 |

Critical percolation and the minimal spanning tree in slabs C Newman, V Tassion, W Wu Communications on Pure and Applied Mathematics 70 (11), 2084-2120, 2017 | 15 | 2017 |

Long-range models in 1D revisited H Duminil-Copin, C Garban, V Tassion arXiv preprint arXiv:2011.04642, 2020 | 13 | 2020 |

Renormalization of crossing probabilities in the planar random-cluster model H Duminil-Copin, V Tassion arXiv preprint arXiv:1901.08294, 2019 | 13 | 2019 |