On the mass-critical generalized KdV equation R Killip, S Kwon, S Shao, M Visan arXiv preprint arXiv:0907.5412, 2009 | 55 | 2009 |

On the fifth-order KdV equation: local well-posedness and lack of uniform continuity of the solution map S Kwon Journal of Differential Equations 245 (9), 2627-2659, 2008 | 55 | 2008 |

Well-posedness and Ill-posedness for the cubic fractional Schr\" odinger equations Y Cho, G Hwang, S Kwon, S Lee arXiv preprint arXiv:1311.0082, 2013 | 50 | 2013 |

Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS Z Guo, S Kwon, T Oh Communications in Mathematical Physics 322 (1), 19-48, 2013 | 48 | 2013 |

On unconditional well-posedness of modified KdV S Kwon, T Oh International Mathematics Research Notices 2012 (15), 3509-3534, 2012 | 42 | 2012 |

Profile decompositions and blowup phenomena of mass critical fractional Schrödinger equations Y Cho, G Hwang, S Kwon, S Lee Nonlinear Analysis: Theory, Methods & Applications 86, 12-29, 2013 | 41 | 2013 |

On finite time blowup for mass-critical Hartree equations Y Cho, G Hwang, S Kwon, S Lee arXiv preprint arXiv:1208.2302, 2012 | 36 | 2012 |

A remark on normal forms and the “upside-down” *I*-method for periodic NLS: Growth of higher Sobolev normsJ Colliander, S Kwon, T Oh Journal d'Analyse Mathématique 118 (1), 55-82, 2012 | 34 | 2012 |

Rough solutions of the fifth-order KdV equations Z Guo, C Kwak, S Kwon Journal of Functional Analysis 265 (11), 2791-2829, 2013 | 33 | 2013 |

Well-posedness and ill-posedness of the fifth order modifed KdV equation S Kwon arXiv preprint arXiv:0711.1060, 2007 | 28 | 2007 |

Orbital stability of solitary waves for derivative nonlinear Schrödinger equation S Kwon, Y Wu Journal d'Analyse Mathématique 135 (2), 473-486, 2018 | 23 | 2018 |

Normal form approach to unconditional well-posedness of nonlinear dispersive PDEs on the real line S Kwon, T Oh, H Yoon Annales de la Faculté des sciences de Toulouse: Mathématiques 29 (3), 649-720, 2020 | 13 | 2020 |

Normal form approach to global well-posedness of the quadratic derivative nonlinear Schrödinger equation on the circle J Chung, Z Guo, S Kwon, T Oh Annales de l'Institut Henri Poincare (C) Non Linear Analysis 34 (5), 1273-1297, 2017 | 9 | 2017 |

Nonsqueezing property of the coupled KdV type system without Miura transform S Hong, S Kwon arXiv preprint arXiv:1509.08114, 2015 | 9 | 2015 |

Profile decompositions of fractional Schrödinger equations with angularly regular data Y Cho, G Hwang, S Kwon, S Lee Journal of Differential Equations 256 (8), 3011-3037, 2014 | 9 | 2014 |

Global existence versus finite time blowup dichotomy for the system of nonlinear Schrödinger equations Y Hong, S Kwon, H Yoon Journal de Mathématiques Pures et Appliquées 125, 283-320, 2019 | 4 | 2019 |

Modified scattering for the Vlasov-Poisson system SH Choi, S Kwon Nonlinearity 29 (9), 2755-2774, 2016 | 4 | 2016 |

Nonexistence of soliton-like solutions for defocusing generalized KdV equations S Kwon, S Shao arXiv preprint arXiv:1205.0849, 2012 | 3 | 2012 |

Bilinear local smoothing estimate for Airy equation S Kwon, T Roy Differential and Integral Equations 25 (1/2), 75-83, 2012 | 3 | 2012 |

Global well-posedness for the -critical Hartree equation on , M Chae, S Kwon, CO Alves, GM Figueiredo, MF Furtado, ER Barbosa, ... Communications on Pure and Applied Analysis 8 (6), 2009 | 3* | 2009 |