Multivariate empirical mode decomposition N Rehman, DP Mandic Proceedings of the Royal Society A: Mathematical, Physical and Engineering …, 2010 | 696 | 2010 |
Filter bank property of multivariate empirical mode decomposition N Ur Rehman, DP Mandic IEEE transactions on signal processing 59 (5), 2421-2426, 2011 | 339 | 2011 |
Empirical mode decomposition-based time-frequency analysis of multivariate signals: The power of adaptive data analysis DP Mandic, N ur Rehman, Z Wu, NE Huang IEEE signal processing magazine 30 (6), 74-86, 2013 | 315 | 2013 |
Empirical mode decomposition for trivariate signals N ur Rehman, DP Mandic IEEE Transactions on signal processing 58 (3), 1059-1068, 2010 | 204 | 2010 |
Classification of motor imagery BCI using multivariate empirical mode decomposition C Park, D Looney, N ur Rehman, A Ahrabian, DP Mandic IEEE Transactions on neural systems and rehabilitation engineering 21 (1), 10-22, 2013 | 196 | 2013 |
EMD via MEMD: multivariate noise-aided computation of standard EMD N ur Rehman, C Park, NE Huang, DP Mandic Advances in Adaptive Data Analysis 5 (02), 1350007, 2013 | 133 | 2013 |
Seizure detection from EEG signals using multivariate empirical mode decomposition A Zahra, N Kanwal, N ur Rehman, S Ehsan, KD McDonald-Maier Computers in biology and medicine 88, 132-141, 2017 | 64 | 2017 |
Bivariate empirical mode decomposition for unbalanced real-world signals A Ahrabian, NU Rehman, D Mandic IEEE Signal Processing Letters 20 (3), 245-248, 2013 | 45 | 2013 |
A joint framework for multivariate signal denoising using multivariate empirical mode decomposition H Hao, HL Wang, NU Rehman Signal Processing 135, 263-273, 2017 | 41 | 2017 |
Integral images: efficient algorithms for their computation and storage in resource-constrained embedded vision systems S Ehsan, A Clark, N Rehman, K McDonald-Maier Sensors 15 (7), 16804-16830, 2015 | 41 | 2015 |
Application of multivariate empirical mode decomposition for seizure detection in EEG signals N ur Rehman, Y Xia, DP Mandic 2010 Annual International Conference of the IEEE Engineering in Medicine and …, 2010 | 40 | 2010 |
Dynamical complexity of human responses: a multivariate data-adaptive framework MU Ahmed, N Rehman, D Looney, TM Rutkowski, DP Mandic Bulletin of the Polish Academy of Sciences: Technical Sciences, 433-445, 2012 | 33 | 2012 |
A multivariate empirical mode decompositionbased approach to pansharpening SMU Abdullah, N ur Rehman, MM Khan, DP Mandic IEEE Transactions on Geoscience and Remote Sensing 53 (7), 3974-3984, 2015 | 27 | 2015 |
Multi-scale pixel-based image fusion using multivariate empirical mode decomposition N Rehman, S Ehsan, S Abdullah, M Akhtar, D Mandic, K McDonald-Maier Sensors 15 (5), 10923-10947, 2015 | 27 | 2015 |
Hybrid multiscale wind speed forecasting based on variational mode decomposition M Ali, A Khan, NU Rehman International Transactions on Electrical Energy Systems 28 (1), e2466, 2018 | 23 | 2018 |
Bivariate EMD-based image fusion N Rehman, D Looney, TM Rutkowski, DP Mandic 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, 57-60, 2009 | 22 | 2009 |
Dynamically-Sampled Bivariate Empirical Mode Decomposition N Rehman, W Safdar, U Rehman, D Mandic IEEE, 2014 | 21 | 2014 |
Multivariate Variational Mode Decomposition N ur Rehman, H Aftab IEEE Transactions on Signal Processing 67 (23), 6039-6052, 2019 | 19 | 2019 |
Translation invariant multi-scale signal denoising based on goodness-of-fit tests N ur Rehman, SZ Abbas, A Asif, A Javed, K Naveed, DP Mandic Signal Processing 131, 220-234, 2017 | 13 | 2017 |
Nonuniformly sampled trivariate empirical mode decomposition A Hemakom, A Ahrabian, D Looney, N ur Rehman, DP Mandic 2015 IEEE International Conference on Acoustics, Speech and Signal …, 2015 | 13 | 2015 |