On the Cauchy problem of fractional Schrödinger equation with Hartree type nonlinearity Y Cho, H Hajaiej, G Hwang, T Ozawa Funkcialaj Ekvacioj 56 (2), 193-224, 2013 | 79 | 2013 |

Well-posedness and Ill-posedness for the cubic fractional Schrödinger equations Y Cho, G Hwang, S Kwon, S Lee Discrete and Continuous Dynamical Systems-A 35 (7), 2863–2880, 2015 | 43 | 2015 |

Profile decompositions and blowup phenomena of mass critical fractional Schrödinger equations Y Cho, G Hwang, S Kwon, S Lee Nonlinear Analysis: Theory, Methods & Applications 86, 12-29, 2013 | 39 | 2013 |

On the orbital stability of fractional Schrödinger equations Y Cho, G Hwang, H Hajaiej, T Ozawa Communications on Pure and Applied Analysis 13 (3), 1267–1282, 2014 | 37 | 2014 |

On finite time blow-up for the mass-critical Hartree equations Y Cho, G Hwang, S Kwon, S Lee Proceedings of the Royal Society of Edinburgh Section A: Mathematics 145 (3 …, 2015 | 32 | 2015 |

Global well-posedness of critical nonlinear Schrödinger equations below Y Cho, G Hwang, T Ozawa Discrete & Continuous Dynamical Systems-A 33 (4), 1389-1405, 2013 | 11 | 2013 |

Profile decompositions of fractional Schrödinger equations with angularly regular data Y Cho, G Hwang, S Kwon, S Lee Journal of Differential Equations 256 (8), 3011-3037, 2014 | 9 | 2014 |

On the focusing energy-critical fractional nonlinear Schrödinger equations Y Cho, G Hwang, T Ozawa Advances in Differential Equations 23 (3/4), 161-192, 2018 | 8 | 2018 |

ON SMALL DATA SCATTERING OF HARTREE EQUATIONS WITH SHORT-RANGE INTERACTION. Y Cho, G Hwang, T Ozawa Communications on Pure & Applied Analysis 15 (5), 1809–1823, 2016 | 7 | 2016 |

Energy concentration of the focusing energy-critical fNLS Y Cho, G Hwang, YS Shim Journal of Mathematical Analysis and Applications 437 (1), 310-329, 2016 | 4 | 2016 |

Almost Sure Well-Posedness of Fractional Schrödinger Equations with Hartree Nonlinearity G Hwang Publications of the Research Institute for Mathematical Sciences 54 (1), 1-44, 2018 | 3* | 2018 |

On the modified scattering of -d Hartree type fractional Schrödinger equations with Coulomb potential for any given initial and boundary data. Y Cho, G Hwang, C Yang Advances in Differential Equations 23 (9/10), 649-692, 2018 | 2 | 2018 |

Probabilistic well-posedness of generalized KdV G Hwang, C Kwak Proceedings of the American Mathematical Society 146 (1), 267-280, 2018 | 2 | 2018 |

Corrigendum to" On small data scattering of Hartree equations with short-range interaction"[Comm. Pure. Appl. Anal., 15 (2016), 1809-1823] Y Cho, G Hwang, T Ozawa Communications on Pure & Applied Analysis 16 (5), 1939, 2017 | 2 | 2017 |

An endpoint Strichartz estimate in spherical coordinates (Harmonic Analysis and Nonlinear Partial Differential Equations) Y Cho, G Hwang, S Lee RIMS Kôkyûroku Bessatsu B33, 49–57, 2012 | 1 | 2012 |

Reconstructing obstacles using CGO solutions for the biharmonic equation G Hwang, M Kar arXiv preprint arXiv:2007.06147, 2020 | | 2020 |

Properties of solutions to semilinear elliptic problem with Hardy potential JL Chern, M Hashizume, G Hwang Journal of Differential Equations, 2020 | | 2020 |

Well-posedness and Scattering for the Critical Fractional Schrödinger Equations G Hwang Funkcialaj Ekvacioj 63 (2), 231-245, 2020 | | 2020 |

Probabilistic well-posedness of the mass-critical NLS with radial data below L2 (Rd) G Hwang Journal of Mathematical Analysis and Applications 475 (2), 1842-1854, 2019 | | 2019 |

On the Neumann Problem of Hardy-Sobolev critical equations with the multiple singularities M Hashizume, CH Hsia, G Hwang Commun. Pure Appl. Anal. 18 (no. 1), 301–322, 2019 | | 2019 |