Discrete maximum principle and adequate discretizations of linear parabolic problems I Farago, R Horvath SIAM Journal on Scientific Computing 28 (6), 2313-2336, 2006 | 85 | 2006 |

Discrete maximum principle for linear parabolic problems solved on hybrid meshes I Faragó, R Horváth, S Korotov Applied Numerical Mathematics 53 (2-4), 249-264, 2005 | 63 | 2005 |

Continuous and discrete parabolic operators and their qualitative properties I Faragó, R Horváth IMA journal of numerical analysis 29 (3), 606-631, 2009 | 33 | 2009 |

Application of operator splitting to the Maxwell equations including a source term MA Botchev, I Faragó, R Horváth Applied numerical mathematics 59 (3-4), 522-541, 2009 | 29 | 2009 |

On the nonnegativity conservation of finite element solutions of parabolic problems I Faragó, R Horváth Proc. Conf. Finite Element Methods: Three-dimensional Problems, Univ. of …, 2001 | 27 | 2001 |

Discrete maximum principles for FE solutions of nonstationary diffusion‐reaction problems with mixed boundary conditions I Faragó, R Horváth, S Korotov Numerical Methods for Partial Differential Equations 27 (3), 702-720, 2011 | 22 | 2011 |

Maximum norm contractivity in the numerical solution of the one-dimensional heat equation R Horváth Applied numerical mathematics 31 (4), 451-462, 1999 | 20 | 1999 |

A review of reliable numerical models for three‐dimensional linear parabolic problems I Faragó, R Horváth International journal for numerical methods in engineering 70 (1), 25-45, 2007 | 17 | 2007 |

On some qualitatively adequate discrete space–time models of epidemic propagation I Farago, R Horvath Journal of Computational and Applied Mathematics 293, 45-54, 2016 | 16 | 2016 |

On the order of operator splitting methods for time-dependent linear systems of differential equations I Faragó, A Havasi, R Horvath International Journal of Numerical Analysis and Modeling 2 (2-3), 142-154, 2011 | 16 | 2011 |

Investigation of numerical time‐integrations of Maxwell's equations using the staggered grid spatial discretization I Faragó, R Horváth, WHA Schilders International Journal of Numerical Modelling: Electronic Networks, Devices …, 2005 | 15 | 2005 |

Sufficient conditions of the discrete maximum–minimum principle for parabolic problems on rectangular meshes R Horváth Computers & Mathematics with Applications 55 (10), 2306-2317, 2008 | 11 | 2008 |

On the monotonicity conservation in numerical solutions of the heat equation R Horváth Applied numerical mathematics 42 (1-3), 189-199, 2002 | 11 | 2002 |

PDE approximation of large systems of differential equations A Bátkai, Á Havasi, R Horváth, D Kunszenti-Kovács, PL Simon arXiv preprint arXiv:1303.6235, 2013 | 10 | 2013 |

On the sign-stability of numerical solutions of one-dimensional parabolic problems R Horváth Applied mathematical modelling 32 (8), 1570-1578, 2008 | 9 | 2008 |

On the sign-stability of the numerical solution of the heat equation R Horváth Pure Math. Appl 11, 281-291, 2000 | 8 | 2000 |

Uniform treatment of numerical time-integrations of the Maxwell equations R Horváth Scientific Computing in Electrical Engineering, 231-239, 2004 | 7 | 2004 |

Qualitative properties of monotone linear parabolic operators I Faragó, R Horváth Proc. 8th Coll. QTDE, 1-15, 2008 | 6 | 2008 |

Discrete maximum principle for Galerkin finite element solutions to parabolic problems on rectangular meshes I Faragó, R Horváth, S Korotov Numerical Mathematics and Advanced Applications, 298-307, 2004 | 6 | 2004 |

Numerical solution of the Maxwell equations in time-varying media using Magnus expansion I Faragó, Á Havasi, R Horváth Central European Journal of Mathematics 10 (1), 137-149, 2012 | 5 | 2012 |