Time-discrete higher-order ALE formulations: stability A Bonito, I Kyza, RH Nochetto SIAM Journal on Numerical Analysis 51 (1), 577-604, 2013 | 48 | 2013 |
Adaptivity and blow-up detection for nonlinear evolution problems A Cangiani, EH Georgoulis, I Kyza, S Metcalfe SIAM Journal on Scientific Computing 38 (6), A3833-A3856, 2016 | 33 | 2016 |
Time-discrete higher order ALE formulations: A priori error analysis A Bonito, I Kyza, RH Nochetto Numerische Mathematik 125 (2), 225-257, 2013 | 25 | 2013 |
Analysis for time discrete approximations of blow-up solutions of semilinear parabolic equations I Kyza, C Makridakis SIAM journal on numerical analysis 49 (1), 405-426, 2011 | 23 | 2011 |
Efficient algorithms for approximating particular solutions of elliptic equations using Chebyshev polynomials A Karageorghis, I Kyza Communications in Computational Physics 2 (3), 501-521, 2007 | 17 | 2007 |
hp-Adaptive Galerkin Time Stepping Methods for Nonlinear Initial Value Problems I Kyza, S Metcalfe, TP Wihler Journal of scientific computing 75, 111-127, 2018 | 14 | 2018 |
A posteriori error control and adaptivity for Crank–Nicolson finite element approximations for the linear Schrödinger equation T Katsaounis, I Kyza Numerische Mathematik 129, 55-90, 2015 | 14 | 2015 |
Error control for time-splitting spectral approximations of the semiclassical Schrödinger equation I Kyza, C Makridakis, M Plexousakis IMA Journal of Numerical Analysis 31 (2), 416-441, 2011 | 9 | 2011 |
A posteriori error estimates for approximations of semilinear parabolic and Schrödinger-type equations I Kyza PhD Thesis, University of Crete, 2009 | 9 | 2009 |
A Posteriori Error Analysis for Evolution Nonlinear Schrodinger Equations Up to the Critical Exponent T Katsaounis, I Kyza SIAM Journal on Numerical Analysis 56 (3), 1405-1434, 2018 | 8 | 2018 |
A dG approach to higher order ale formulations in time A Bonito, I Kyza, RH Nochetto Recent Developments in Discontinuous Galerkin Finite Element Methods for …, 2014 | 7 | 2014 |
Pointwise a posteriori error bounds for blow-up in the semilinear heat equation I Kyza, S Metcalfe SIAM Journal on Numerical Analysis 58 (5), 2609-2631, 2020 | 6 | 2020 |
A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations I Kyza ESAIM: Mathematical Modelling and Numerical Analysis 45 (4), 761-778, 2011 | 6 | 2011 |
Regularized semiclassical limits: linear flows with infinite Lyapunov exponents A Athanassoulis, T Katsaounis, I Kyza arXiv preprint arXiv:1403.7935, 2014 | 3 | 2014 |
A novel, structure-preserving, second-order-in-time relaxation scheme for Schrödinger-Poisson systems A Athanassoulis, T Katsaounis, I Kyza, S Metcalfe | | 2022 |
A novel relaxation scheme for the numerical approximation of Schr\" odinger-Poisson type systems A Athanassoulis, T Katsaounis, I Kyza, S Metcalfe arXiv preprint arXiv:2103.04903, 2021 | | 2021 |
A new Besse-type relaxation scheme for the numerical approximation of the Schrödinger-Poisson system. A Athanassoulis, T Katsaounis, I Kyza, S Metcalfe arXiv e-prints, arXiv: 2103.04903, 2021 | | 2021 |