Hans van Lint
Hans van Lint
Full Professor Traffic Simulation and Computing, Delft University of Technology
Verified email at tudelft.nl
Title
Cited by
Cited by
Year
Accurate freeway travel time prediction with state-space neural networks under missing data
JWC Van Lint, SP Hoogendoorn, HJ van Zuylen
Transportation Research Part C: Emerging Technologies 13 (5-6), 347-369, 2005
4372005
Travel time unreliability on freeways: Why measures based on variance tell only half the story
JWC Van Lint, HJ Van Zuylen, H Tu
Transportation Research Part A: Policy and Practice 42 (1), 258-277, 2008
2992008
Improving a travel-time estimation algorithm by using dual loop detectors
JWC Van Lint, NJ Van der Zijpp
Transportation Research Record 1855 (1), 41-48, 2003
2172003
Online learning solutions for freeway travel time prediction
JWC Van Lint
IEEE Transactions on Intelligent Transportation Systems 9 (1), 38-47, 2008
1952008
Freeway travel time prediction with state-space neural networks: modeling state-space dynamics with recurrent neural networks
JWC Van Lint, SP Hoogendoorn, HJ van Zuylen
Transportation Research Record 1811 (1), 30-39, 2002
1952002
Monitoring and predicting freeway travel time reliability: Using width and skew of day-to-day travel time distribution
JWC Van Lint, HJ van Zuylen
Transportation Research Record 1917 (1), 54-62, 2005
1902005
Real-time Lagrangian traffic state estimator for freeways
Y Yuan, JWC Van Lint, RE Wilson, F van Wageningen-Kessels, ...
IEEE Transactions on Intelligent Transportation Systems 13 (1), 59-70, 2012
1802012
A robust and efficient method for fusing heterogeneous data from traffic sensors on freeways
JWC Van Lint, SP Hoogendoorn
Computer‐Aided Civil and Infrastructure Engineering 25 (8), 596-612, 2010
1732010
Reliable travel time prediction for freeways
JWC Van Lint
Netherlands TRAIL Research School, 2004
1732004
Routing strategies based on macroscopic fundamental diagram
VL Knoop, SP Hoogendoorn, JWC Van Lint
Transportation Research Record 2315 (1), 1-10, 2012
1592012
Bayesian committee of neural networks to predict travel times with confidence intervals
CPIJ van Hinsbergen, JWC Van Lint, HJ Van Zuylen
Transportation Research Part C: Emerging Technologies 17 (5), 498-509, 2009
1392009
Genealogy of traffic flow models
F van Wageningen-Kessels, H Van Lint, K Vuik, S Hoogendoorn
EURO Journal on Transportation and Logistics 4 (4), 445-473, 2015
1372015
Fastlane: New multiclass first-order traffic flow model
JWC Van Lint, SP Hoogendoorn, M Schreuder
Transportation Research Record 2088 (1), 177-187, 2008
1352008
Short-term traffic and travel time prediction models
JWC Van Lint, C Van Hinsbergen
Artificial Intelligence Applications to Critical Transportation Issues 22 (1 …, 2012
1332012
Predicting urban arterial travel time with state-space neural networks and Kalman filters
H Liu, H Van Zuylen, H Van Lint, M Salomons
Transportation Research Record 1968 (1), 99-108, 2006
1302006
Prediction intervals to account for uncertainties in travel time prediction
A Khosravi, E Mazloumi, S Nahavandi, D Creighton, JWC Van Lint
IEEE Transactions on Intelligent Transportation Systems 12 (2), 537-547, 2011
1272011
Reliable real-time framework for short-term freeway travel time prediction
JW Van Lint
Journal of transportation engineering 132 (12), 921-932, 2006
1102006
A genetic algorithm-based method for improving quality of travel time prediction intervals
A Khosravi, E Mazloumi, S Nahavandi, D Creighton, JWC Van Lint
Transportation Research Part C: Emerging Technologies 19 (6), 1364-1376, 2011
882011
Bayesian combination of travel time prediction models
CPIJ van Hinsbergen, JWC Van Lint
Transportation Research Record 2064 (1), 73-80, 2008
822008
Localized extended kalman filter for scalable real-time traffic state estimation
CPIJ Van Hinsbergen, T Schreiter, FS Zuurbier, JWC Van Lint, ...
IEEE transactions on intelligent transportation systems 13 (1), 385-394, 2011
792011
The system can't perform the operation now. Try again later.
Articles 1–20