Follow
Jacques Lévy Véhel
Title
Cited by
Cited by
Year
Multifractional Brownian motion: definition and preliminary results
J Lévy Véhel, RF Peltier
Rapport de recherche de l˘INRIA n2645, 1995
559*1995
Stochastic fractal models for image processing
B Pesquet-Popescu, J Lévy Véhel
Signal Processing Magazine, IEEE 19 (5), 48-62, 2002
2312002
Multifractal properties of TCP traffic: a numerical study
R Riedi, J Lévy Véhel
2071997
Fractals in engineering: from theory to industrial applications
J Lévy Véhel, E Lutton, C Tricot
Springer Verlag, 1997
180*1997
The covariance structure of multifractional Brownian motion, with application to long range dependence
A Ayache, S Cohen, J Lévy Véhel
Acoustics, Speech, and Signal Processing, 2000. ICASSP'00. Proceedings. 2000 …, 2000
1572000
Multifractal analysis of Choquet capacities
J Lévy Véhel, R Vojak
Advances in applied mathematics 20 (1), 1-43, 1998
157*1998
Construction of continuous functions with prescribed local regularity
K Daoudi, J Lévy Véhel, Y Meyer
Constructive Approximation 14, 349-385, 1998
1561998
The generalized multifractional Brownian motion
A Ayache, J Lévy Véhel
Statistical Inference for Stochastic Processes 3 (1), 7-18, 2000
1532000
Fractional Brownian motion and data traffic modeling: The other end of the spectrum
J Lévy Véhel, R Riedi
Fractals in Engineering 97, 185-202, 1997
1531997
Multifractal segmentation of images
J Lévy Véhel, P Mignot
Fractals 2 (3), 371-378, 1994
1521994
Introduction to the multifractal analysis of images
J Lévy Véhel
Fractal Image Encoding and Analysis 159, 299-341, 1998
1371998
Fractal approaches in signal processing
J Lévy Véhel
Fractal Geometry and Analysis: the Mandelbrot festschrift, 1996
1361996
TCP traffic is multifractal: a numerical study
J Lévy Véhel, RH Riedi
Res. Rep. RR-3129, INRIA, 1997
115*1997
A new method for estimating the parameter of fractional Brownian motion
RF Peltier, J Lévy Véhel
RAPPORT DE RECHERCHE-INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN …, 1994
1091994
On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion
A Ayache, JL Véhel
Stochastic Processes and their Applications 111 (1), 119-156, 2004
1012004
Fractals in Engineering. New Trends in Theory and Applications
J Lévy-Véhel, E Lutton
Springer-Verlag New York Incorporated, 2005
952005
Scaling, fractals and wavelets
P Abry, P Goncalves, JL Véhel
John Wiley & Sons, 2013
932013
Multifractional stochastic volatility models
S Corlay, J Lebovits, JL Véhel
Mathematical Finance 24 (2), 364-402, 2014
902014
Generalized multifractional Brownian motion: definition and preliminary results
A Ayache, J Lévy Véhel
Fractals-Theory and Applications in Engineering, 1999
891999
The local Hölder function of a continuous function
S Seuret, JL Véhel
Applied and Computational Harmonic Analysis 13 (3), 263-276, 2002
792002
The system can't perform the operation now. Try again later.
Articles 1–20