Multifractional Brownian motion: definition and preliminary results J Lévy Véhel, RF Peltier Rapport de recherche de l˘INRIA n2645, 1995 | 559* | 1995 |

Stochastic fractal models for image processing B Pesquet-Popescu, J Lévy Véhel Signal Processing Magazine, IEEE 19 (5), 48-62, 2002 | 231 | 2002 |

Multifractal properties of TCP traffic: a numerical study R Riedi, J Lévy Véhel | 207 | 1997 |

Fractals in engineering: from theory to industrial applications J Lévy Véhel, E Lutton, C Tricot Springer Verlag, 1997 | 180* | 1997 |

The covariance structure of multifractional Brownian motion, with application to long range dependence A Ayache, S Cohen, J Lévy Véhel Acoustics, Speech, and Signal Processing, 2000. ICASSP'00. Proceedings. 2000 …, 2000 | 157 | 2000 |

Multifractal analysis of Choquet capacities J Lévy Véhel, R Vojak Advances in applied mathematics 20 (1), 1-43, 1998 | 157* | 1998 |

Construction of continuous functions with prescribed local regularity K Daoudi, J Lévy Véhel, Y Meyer Constructive Approximation 14, 349-385, 1998 | 156 | 1998 |

The generalized multifractional Brownian motion A Ayache, J Lévy Véhel Statistical Inference for Stochastic Processes 3 (1), 7-18, 2000 | 153 | 2000 |

Fractional Brownian motion and data traffic modeling: The other end of the spectrum J Lévy Véhel, R Riedi Fractals in Engineering 97, 185-202, 1997 | 153 | 1997 |

Multifractal segmentation of images J Lévy Véhel, P Mignot Fractals 2 (3), 371-378, 1994 | 152 | 1994 |

Introduction to the multifractal analysis of images J Lévy Véhel Fractal Image Encoding and Analysis 159, 299-341, 1998 | 137 | 1998 |

Fractal approaches in signal processing J Lévy Véhel Fractal Geometry and Analysis: the Mandelbrot festschrift, 1996 | 136 | 1996 |

TCP traffic is multifractal: a numerical study J Lévy Véhel, RH Riedi Res. Rep. RR-3129, INRIA, 1997 | 115* | 1997 |

A new method for estimating the parameter of fractional Brownian motion RF Peltier, J Lévy Véhel RAPPORT DE RECHERCHE-INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN …, 1994 | 109 | 1994 |

On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion A Ayache, JL Véhel Stochastic Processes and their Applications 111 (1), 119-156, 2004 | 101 | 2004 |

Fractals in Engineering. New Trends in Theory and Applications J Lévy-Véhel, E Lutton Springer-Verlag New York Incorporated, 2005 | 95 | 2005 |

Scaling, fractals and wavelets P Abry, P Goncalves, JL Véhel John Wiley & Sons, 2013 | 93 | 2013 |

Multifractional stochastic volatility models S Corlay, J Lebovits, JL Véhel Mathematical Finance 24 (2), 364-402, 2014 | 90 | 2014 |

Generalized multifractional Brownian motion: definition and preliminary results A Ayache, J Lévy Véhel Fractals-Theory and Applications in Engineering, 1999 | 89 | 1999 |

The local Hölder function of a continuous function S Seuret, JL Véhel Applied and Computational Harmonic Analysis 13 (3), 263-276, 2002 | 79 | 2002 |