A simulation-based architecture for smart cyber-physical systems T Gabor, L Belzner, M Kiermeier, MT Beck, A Neitz 2016 IEEE international conference on autonomic computing (ICAC), 374-379, 2016 | 282 | 2016 |
Learning explanations that are hard to vary G Parascandolo*, A Neitz*, A Orvieto, L Gresele, B Schölkopf ICLR 2021, 2021 | 114 | 2021 |
CausalWorld: A robotic manipulation benchmark for causal structure and transfer learning O Ahmed*, F Träuble*, A Goyal, A Neitz, Y Bengio, B Schölkopf, ... ICLR 2021, 2021 | 98 | 2021 |
Neural Symbolic Regression that Scales L Biggio, T Bendinelli, A Neitz, A Lucchi, G Parascandolo ICML 2021, 2021 | 72 | 2021 |
Adaptive skip intervals: Temporal abstraction for recurrent dynamical models A Neitz, G Parascandolo, S Bauer, B Schölkopf NeurIPS 2018, 2018 | 37 | 2018 |
Divide-and-conquer monte carlo tree search for goal-directed planning G Parascandolo, L Buesing, J Merel, L Hasenclever, J Aslanides, ... arXiv preprint arXiv:2004.11410, 2020 | 26 | 2020 |
Direct advantage estimation HR Pan, N Gürtler, A Neitz, B Schölkopf Advances in Neural Information Processing Systems 35, 11869-11880, 2022 | 6 | 2022 |
Discovering ordinary differential equations that govern time-series S Becker, M Klein, A Neitz, G Parascandolo, N Kilbertus arXiv preprint arXiv:2211.02830, 2022 | 2 | 2022 |
A teacher-student framework to distill future trajectories A Neitz, G Parascandolo, B Schölkopf ICLR 2021, 0 | 2* | |
Predicting Ordinary Differential Equations with Transformers S Becker, M Klein, A Neitz, G Parascandolo, N Kilbertus | 1 | 2023 |
Risk-sensitivity in simulation based online planning K Schmid, L Belzner, M Kiermeier, A Neitz, T Phan, T Gabor, C Linnhoff KI 2018: Advances in Artificial Intelligence: 41st German Conference on AI …, 2018 | 1 | 2018 |
Learning relational probabilistic action models for online planning with decision forests L Belzner, A Neitz Proceedings of the 31st Annual ACM Symposium on Applied Computing, 248-253, 2016 | 1 | 2016 |
Towards learning mechanistic models at the right level of abstraction A Neitz Universität Tübingen, 2023 | | 2023 |
Efficient Discovery of Dynamical Laws in Symbolic Form S Becker, M Klein, A Neitz, G Parascandolo, N Kilbertus | | 2022 |