Galerkin finite element approximations of stochastic elliptic partial differential equations I Babuska, R Tempone, GE Zouraris SIAM Journal on Numerical Analysis 42 (2), 800-825, 2004 | 1046 | 2004 |

Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation I Babuška, R Tempone, GE Zouraris Computer methods in applied mechanics and engineering 194 (12-16), 1251-1294, 2005 | 386 | 2005 |

Adaptive weak approximation of stochastic differential equations A Szepessy, R Tempone, GE Zouraris Communications on Pure and Applied Mathematics: A Journal Issued by the …, 2001 | 87 | 2001 |

On the construction and analysis of high order locally conservative finite volume-type methods for one-dimensional elliptic problems M Plexousakis, GE Zouraris SIAM journal on numerical analysis 42 (3), 1226-1260, 2004 | 67 | 2004 |

Adaptive weak approximation of diffusions with jumps E Mordecki, A Szepessy, R Tempone, GE Zouraris SIAM Journal on Numerical Analysis 46 (4), 1732-1768, 2008 | 42 | 2008 |

Convergence rates for adaptive weak approximation of stochastic differential equations KS Moon, A Szepessy, R Tempone, GE Zouraris Stochastic analysis and applications 23 (3), 511-558, 2005 | 41 | 2005 |

On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation GE Zouraris ESAIM: Mathematical Modelling and Numerical Analysis 35 (3), 389-405, 2001 | 37 | 2001 |

Fully-discrete finite element approximations for a fourth-order linear stochastic parabolic equation with additive space-time white noise GT Kossioris, GE Zouraris ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation …, 2010 | 32 | 2010 |

Finite difference schemes for the" parabolic" equation in a variable depth environment with a rigid bottom boundary condition GD Akrivis, VA Dougalis, GE Zouraris SIAM Journal on Numerical Analysis 39 (2), 539-565, 2001 | 29 | 2001 |

Convergence rates for adaptive approximation of ordinary differential equations KS Moon, A Szepessy, R Tempone, GE Zouraris Numerische Mathematik 96 (1), 99-129, 2003 | 27 | 2003 |

Galerkin finite elements approximation of stochastic finite elements I Babuska, R Tempone, GE Zouraris SIAM J. Numer. Anal 42 (2), 800-825, 2004 | 26 | 2004 |

A variational principle for adaptive approximation of ordinary differential equations KS Moon, A Szepessy, R Tempone, GE Zouraris Numerische Mathematik 96 (1), 131-152, 2003 | 22 | 2003 |

A linearly implicit finite difference method for a Klein-Gordon-Schrödinger system modeling electron-ion plasma waves P Xanthopoulos, GE Zouraris Discrete & Continuous Dynamical Systems-B 10 (1), 239, 2008 | 18 | 2008 |

Error estimates for finite difference methods for a wide-angle “parabolic” equation GD Akrivis, VA Dougalis, GE Zouraris SIAM journal on numerical analysis 33 (6), 2488-2509, 1996 | 18 | 1996 |

Stochastic differential equations: Models and numerics J Carlsson, KS Moon, A Szepessy, R Tempone, G Zouraris Lecture notes, 2010 | 17 | 2010 |

Galerkin methods for parabolic and Schrödinger equations with dynamical boundary conditions and applications to underwater acoustics DC Antonopoulou, VA Dougalis, GE Zouraris SIAM Journal on Numerical Analysis 47 (4), 2752-2781, 2009 | 17 | 2009 |

Stochastic and partial differential equations with adapted numerics J Goodman, KS Moon, A Szepessy, R Tempone, G Zouraris Lecture Notes, 2002 | 14 | 2002 |

Hyperbolic differential equations and adaptive numerics KS Moon, A Szepessy, R Tempone, G Zouraris Theory and numerics of differential equations, 231-280, 2001 | 13 | 2001 |

Finite element approximations for a linear Cahn-Hilliard-Cook equation driven by the space derivative of a space-time white noise GT Kossioris, GE Zouraris arXiv preprint arXiv:1205.4314, 2012 | 12 | 2012 |

Theory and numerical approximations for a nonlinear 1+ 1 Dirac system N Bournaveas, GE Zouraris ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation …, 2012 | 11 | 2012 |