Danielle Hilhorst
Danielle Hilhorst
Research Director at CNRS
Verified email at
Cited by
Cited by
The finite volume method for Richards equation
R Eymard, M Gutnic, D Hilhorst
Computational Geosciences 3, 259-294, 1999
A combined finite volume–nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems
R Eymard, D Hilhorst, M Vohralík
Numerische Mathematik 105 (1), 73-131, 2006
Spatial segregation limit of a competition–diffusion system
EN Dancer, D Hilhorst, M Mimura, LA Peletier
European Journal of Applied Mathematics 10 (2), 97-115, 1999
Finite dimensional exponential attractor for the phase field model
D Brochet, D Hilhorst, X Chen
Applicable Analysis 49 (3-4), 197-212, 1993
Existence and nonexistence of solutions for a model of gravitational interaction of particles, II
P Biler, D Hilhorst, T Nadzieja
Colloquium Mathematicum 67 (2), 297-308, 1994
The singular limit of the Allen–Cahn equation and the FitzHugh–Nagumo system
M Alfaro, D Hilhorst, H Matano
Journal of Differential Equations 245 (2), 505-565, 2008
Finite volumes and nonlinear diffusion equations
R Eymard, T Gallouët, D Hilhorst, YN Slimane
ESAIM: Mathematical Modelling and Numerical Analysis 32 (6), 747-761, 1998
Mass conserving Allen–Cahn equation and volume preserving mean curvature flow
X Chen, D Hilhorst, E Logak
Interfaces and Free Boundaries 12 (4), 527-549, 2011
The fast reaction limit for a reaction-diffusion system
D Hilhorst, R Van Der Hout, LA Peletier
Journal of mathematical analysis and applications 199 (2), 349-373, 1996
A reaction–diffusion system with fast reversible reaction
D Bothe, D Hilhorst
Journal of mathematical analysis and applications 286 (1), 125-135, 2003
On a Cahn-Hilliard type phase field system related to tumor growth
P Colli, G Gilardi, D Hilhorst
arXiv preprint arXiv:1401.5943, 2014
Spatial segregation limit of a competition-diffusion system with Dirichlet boundary conditions
ECM Crooks, EN Dancer, D Hilhorst, M Mimura, H Ninomiya
Nonlinear Analysis: Real World Applications 5 (4), 645-665, 2004
Dual methods in entropy maximization. Application to some problems in crystallography
A Decarreau, D Hilhorst, C Lemaréchal, J Navaza
SIAM Journal on Optimization 2 (2), 173-197, 1992
Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure
K Brenner, C Cancès, D Hilhorst
Computational Geosciences 17, 573-597, 2013
Formal asymptotic limit of a diffuse-interface tumor-growth model
D Hilhorst, J Kampmann, TN Nguyen, KG Van Der Zee
Mathematical Models and Methods in Applied Sciences 25 (06), 1011-1043, 2015
On the slow dynamics for the Cahn–Hilliard equation in one space dimension
L Bronsard, D Hilhorst
Proceedings of the Royal Society of London. Series A: Mathematical and …, 1992
A competition-diffusion system approximation to the classical two-phase Stefan problem: To the memory of Professor Masaya Yamaguti
D Hilhorst, M Iida, M Mimura, H Ninomiya
Japan journal of industrial and applied mathematics 18, 161-180, 2001
On interacting populations that disperse to avoid crowding: preservation of segregation
M Bertsch, ME Gurtin, D Hilhorst, LA Peletier
University of Wisconsin-Madison. Mathematics Research Center, 1984
Vanishing latent heat limit in a Stefan-like problem arising in biology
D Hilhorst, M Mimura, R Schätzle
Nonlinear analysis: real world applications 4 (2), 261-285, 2003
Maximal attractor and inertial sets for a conserved phase field model
D Brochet, D Hilhorst, A Novick-Cohen
The system can't perform the operation now. Try again later.
Articles 1–20