Παρακολούθηση
Alhussein Fawzi
Alhussein Fawzi
Research Scientist, Google DeepMind
Η διεύθυνση ηλεκτρονικού ταχυδρομείου έχει επαληθευτεί στον τομέα google.com - Αρχική σελίδα
Τίτλος
Παρατίθεται από
Παρατίθεται από
Έτος
Deepfool: a simple and accurate method to fool deep neural networks
SM Moosavi-Dezfooli, A Fawzi, P Frossard
Proceedings of the IEEE conference on computer vision and pattern …, 2016
37032016
Universal adversarial perturbations
SM Moosavi-Dezfooli, A Fawzi, O Fawzi, P Frossard
Proceedings of the IEEE conference on computer vision and pattern …, 2017
19742017
Analysis of classifiers’ robustness to adversarial perturbations
A Fawzi, O Fawzi, P Frossard
Machine learning 107 (3), 481-508, 2018
362*2018
Robustness of classifiers: from adversarial to random noise
A Fawzi, SM Moosavi-Dezfooli, P Frossard
Advances in neural information processing systems 29, 2016
3172016
Analysis of classifiers' robustness to adversarial perturbations
A Fawzi, O Fawzi, P Frossard
arXiv preprint arXiv:1502.02590, 2015
3142015
Adversarial vulnerability for any classifier
A Fawzi, H Fawzi, O Fawzi
Advances in neural information processing systems 31, 2018
2132018
Adaptive data augmentation for image classification
A Fawzi, H Samulowitz, D Turaga, P Frossard
2016 IEEE international conference on image processing (ICIP), 3688-3692, 2016
2022016
Robustness via curvature regularization, and vice versa
SM Moosavi-Dezfooli, A Fawzi, J Uesato, P Frossard
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019
1942019
Adversarial robustness through local linearization
C Qin, J Martens, S Gowal, D Krishnan, K Dvijotham, A Fawzi, S De, ...
Advances in Neural Information Processing Systems 32, 2019
1832019
The robustness of deep networks: A geometrical perspective
A Fawzi, SM Moosavi-Dezfooli, P Frossard
IEEE Signal Processing Magazine 34 (6), 50-62, 2017
152*2017
Empirical study of the topology and geometry of deep networks
A Fawzi, SM Moosavi-Dezfooli, P Frossard, S Soatto
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2018
149*2018
Manitest: Are classifiers really invariant?
A Fawzi, P Frossard
arXiv preprint arXiv:1507.06535, 2015
1062015
Are labels required for improving adversarial robustness?
JB Alayrac, J Uesato, PS Huang, A Fawzi, R Stanforth, P Kohli
Advances in Neural Information Processing Systems 32, 2019
802019
Are Labels Required for Improving Adversarial Robustness?
J Uesato, JB Alayrac, PS Huang, R Stanforth, A Fawzi, P Kohli
arXiv preprint arXiv:1905.13725, 2019
782019
Dictionary learning for fast classification based on soft-thresholding
A Fawzi, M Davies, P Frossard
International Journal of Computer Vision 114 (2), 306-321, 2015
582015
Robustness of classifiers to universal perturbations: A geometric perspective
SM Moosavi-Dezfooli, A Fawzi, O Fawzi, P Frossard, S Soatto
arXiv preprint arXiv:1705.09554, 2017
502017
Robustness of classifiers to uniform and Gaussian noise
JY Franceschi, A Fawzi, O Fawzi
International Conference on Artificial Intelligence and Statistics, 1280-1288, 2018
352018
Image inpainting through neural networks hallucinations
A Fawzi, H Samulowitz, D Turaga, P Frossard
2016 IEEE 12th Image, Video, and Multidimensional Signal Processing Workshop …, 2016
302016
Measuring the effect of nuisance variables on classifiers
A Fawzi, P Frossard
British Machine Vision Conference (BMVC), 2016
292016
Verification of deep probabilistic models
K Dvijotham, M Garnelo, A Fawzi, P Kohli
arXiv preprint arXiv:1812.02795, 2018
242018
Δεν είναι δυνατή η εκτέλεση της ενέργειας από το σύστημα αυτή τη στιγμή. Προσπαθήστε ξανά αργότερα.
Άρθρα 1–20