Yogi Ahmad Erlangga
Yogi Ahmad Erlangga
Nazarbayev University, Mathematics Department
Verified email at nu.edu.kz
Title
Cited by
Cited by
Year
A novel multigrid based preconditioner for heterogeneous Helmholtz problems
YA Erlangga, CW Oosterlee, C Vuik
SIAM Journal on Scientific Computing 27 (4), 1471-1492, 2006
3422006
On a class of preconditioners for solving the Helmholtz equation
YA Erlangga, C Vuik, CW Oosterlee
Applied Numerical Mathematics 50 (3-4), 409-425, 2004
2882004
On a class of preconditioners for solving the Helmholtz equation
YA Erlangga, C Vuik, CW Oosterlee
Applied Numerical Mathematics 50 (3-4), 409-425, 2004
2882004
Advances in iterative methods and preconditioners for the Helmholtz equation
YA Erlangga
Archives of Computational Methods in Engineering 15 (1), 37-66, 2008
1672008
Spectral analysis of the discrete Helmholtz operator preconditioned with a shifted Laplacian
MB van Gijzen, YA Erlangga, C Vuik
SIAM Journal on Scientific Computing 29 (5), 1942-1958, 2007
1312007
Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods
JM Tang, R Nabben, C Vuik, YA Erlangga
Journal of scientific computing 39 (3), 340-370, 2009
1272009
Compressive simultaneous full-waveform simulation
FJ Herrmann, YA Erlangga, TT Lin
Geophysics 74 (4), A35-A40, 2009
1152009
Compressive simultaneous full-waveform simulation
FJ Herrmann, YA Erlangga, TT Lin
Geophysics 74 (4), A35-A40, 2009
1152009
Compressive simultaneous full-waveform simulation
FJ Herrmann, YA Erlangga, TT Lin
Geophysics 74 (4), A35-A40, 2009
1152009
Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation
YA Erlangga, C Vuik, CW Oosterlee
Applied numerical mathematics 56 (5), 648-666, 2006
932006
A parallel multigrid-based preconditioner for the 3D heterogeneous high-frequency Helmholtz equation
CD Riyanti, A Kononov, YA Erlangga, C Vuik, CW Oosterlee, RE Plessix, ...
Journal of Computational physics 224 (1), 431-448, 2007
892007
A new iterative solver for the time-harmonic wave equation
CD Riyanti, YA Erlangga, RE Plessix, WA Mulder, C Vuik, C Oosterlee
Geophysics 71 (5), E57-E63, 2006
802006
On a multilevel Krylov method for the Helmholtz equation preconditioned by shifted Laplacian
YA Erlangga, R Nabben
Electronic Transactions on Numerical Analysis 31 (403-424), 3, 2008
782008
Deflation and balancing preconditioners for Krylov subspace methods applied to nonsymmetric matrices
YA Erlangga, R Nabben
SIAM Journal on Matrix Analysis and Applications 30 (2), 684-699, 2008
632008
Multilevel projection-based nested Krylov iteration for boundary value problems
YA Erlangga, R Nabben
SIAM Journal on Scientific Computing 30 (3), 1572-1595, 2008
562008
Curvelet-based migration preconditioning and scaling
FJ Herrmann, CR Brown, YA Erlangga, PP Moghaddam
Geophysics 74 (4), A41-A46, 2009
392009
A robust and efficient iterative method for the numerical solution of the Helmholtz equation
YA Erlangga
DIAM, TU Delft, 2005
332005
Algebraic multilevel Krylov methods
YA Erlangga, R Nabben
SIAM Journal on Scientific Computing 31 (5), 3417-3437, 2009
282009
Multifractional splines: application to seismic imaging
FJ Herrmann
Wavelets: Applications in Signal and Image Processing X 5207, 240-258, 2003
262003
Numerical modeling of seismic wave propagation: Gridded two-way wave-equation methods
JOA Robertsson, JO Blanch, K Nihei, J Tromp
Society of Exploration Geophysicists, 2012
252012
The system can't perform the operation now. Try again later.
Articles 1–20