Christophe Mues
Christophe Mues
Professor of Data Science and Information Systems, University of Southampton
Verified email at soton.ac.uk - Homepage
Title
Cited by
Cited by
Year
Benchmarking classification models for software defect prediction: A proposed framework and novel findings
S Lessmann, B Baesens, C Mues, S Pietsch
IEEE Transactions on Software Engineering 34 (4), 485-496, 2008
10222008
Using neural network rule extraction and decision tables for credit-risk evaluation
B Baesens, R Setiono, C Mues, J Vanthienen
Management science 49 (3), 312-329, 2003
5472003
An experimental comparison of classification algorithms for imbalanced credit scoring data sets
I Brown, C Mues
Expert Systems with Applications 39 (3), 3446-3453, 2012
4552012
Building comprehensible customer churn prediction models with advanced rule induction techniques
W Verbeke, D Martens, C Mues, B Baesens
Expert systems with applications 38 (3), 2354-2364, 2011
2952011
An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models
J Huysmans, K Dejaeger, C Mues, J Vanthienen, B Baesens
Decision Support Systems 51 (1), 141-154, 2011
2612011
Benchmarking regression algorithms for loss given default modeling
G Loterman, I Brown, D Martens, C Mues, B Baesens
International Journal of Forecasting 28 (1), 161-170, 2012
1472012
Recursive neural network rule extraction for data with mixed attributes
R Setiono, B Baesens, C Mues
IEEE Transactions on Neural Networks 19 (2), 299-307, 2008
1442008
Mining software repositories for comprehensible software fault prediction models
O Vandecruys, D Martens, B Baesens, C Mues, M De Backer, R Haesen
Journal of Systems and software 81 (5), 823-839, 2008
1352008
Inferring descriptive and approximate fuzzy rules for credit scoring using evolutionary algorithms
F Hoffmann, B Baesens, C Mues, T Van Gestel, J Vanthienen
European journal of operational research 177 (1), 540-555, 2007
1132007
Mixture cure models in credit scoring: If and when borrowers default
ENC Tong, C Mues, LC Thomas
European Journal of Operational Research 218 (1), 132-139, 2012
982012
50 years of data mining and OR: upcoming trends and challenges
B Baesens, C Mues, D Martens, J Vanthienen
Journal of the Operational Research Society 60 (sup1), S16-S23, 2009
762009
Domain knowledge integration in data mining using decision tables: case studies in churn prediction
E Lima, C Mues, B Baesens
Journal of the Operational Research Society 60 (8), 1096-1106, 2009
722009
Modelling LGD for unsecured personal loans: Decision tree approach
A Matuszyk, C Mues, LC Thomas
Journal of the Operational Research Society 61 (3), 393-398, 2010
662010
Predicting loss given default (LGD) for residential mortgage loans: A two-stage model and empirical evidence for UK bank data
M Leow, C Mues
International Journal of Forecasting 28 (1), 183-195, 2012
612012
Ant-based approach to the knowledge fusion problem
D Martens, M De Backer, R Haesen, B Baesens, C Mues, J Vanthienen
International Workshop on Ant Colony Optimization and Swarm Intelligence, 84-95, 2006
602006
An illustration of verification and validation in the modelling phase of KBS development
J Vanthienen, C Mues, A Aerts
Data & Knowledge Engineering 27 (3), 337-352, 1998
551998
A zero-adjusted gamma model for mortgage loan loss given default
ENC Tong, C Mues, L Thomas
International Journal of Forecasting 29 (4), 548-562, 2013
522013
A note on knowledge discovery using neural networks and its application to credit card screening
R Setiono, B Baesens, C Mues
European Journal of Operational Research 192 (1), 326-332, 2009
502009
An empirical comparison of classification algorithms for mortgage default prediction: evidence from a distressed mortgage market
T Fitzpatrick, C Mues
European Journal of Operational Research 249 (2), 427-439, 2016
492016
Decision diagrams in machine learning: an empirical study on real-life credit-risk data
C Mues, B Baesens, CM Files, J Vanthienen
Expert Systems with Applications 27 (2), 257-264, 2004
412004
The system can't perform the operation now. Try again later.
Articles 1–20