A family of nonlinear fourth order equations of gradient flow type D Matthes, RJ McCann, G Savaré Communications in Partial Differential Equations 34 (11), 1352-1397, 2009 | 178 | 2009 |

Kinetic equations modelling wealth redistribution: a comparison of approaches B Düring, D Matthes, G Toscani Physical Review E 78 (5), 056103, 2008 | 153 | 2008 |

On steady distributions of kinetic models of conservative economies D Matthes, G Toscani Journal of Statistical Physics 130, 1087-1117, 2008 | 149 | 2008 |

The Derrida–Lebowitz–Speer–Spohn equation: Existence, nonuniqueness, and decay rates of the solutions A Jüngel, D Matthes SIAM Journal on Mathematical Analysis 39 (6), 1996-2015, 2008 | 113 | 2008 |

An algorithmic construction of entropies in higher-order nonlinear PDEs A Jüngel, D Matthes Nonlinearity 19 (3), 633, 2006 | 81 | 2006 |

Derivation of new quantum hydrodynamic equations using entropy minimization A Jüngel, D Matthes, JP Milišić SIAM Journal on Applied Mathematics 67 (1), 46-68, 2006 | 78 | 2006 |

Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation∗ D Matthes, H Osberger ESAIM: Mathematical Modelling and Numerical Analysis 48 (3), 697-726, 2014 | 70 | 2014 |

Cahn-Hilliard and Thin Film equations with nonlinear mobility as gradient flows in weighted-Wasserstein metrics S Lisini, D Matthes, G Savaré Arxiv preprint arXiv:1201.2367, 2012 | 70 | 2012 |

A Boltzmann-type approach to the formation of wealth distribution curves B Düring, D Matthes, G Toscani Bibliothek der Universität Konstanz, 2008 | 64 | 2008 |

A gradient flow scheme for nonlinear fourth order equations B Düring, D Matthes, JP Milišic Discrete Contin. Dyn. Syst. Ser. B 14 (3), 935-959, 2010 | 59 | 2010 |

A derivation of the isothermal quantum hydrodynamic equations using entropy minimization A Jüngel, D Matthes ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte …, 2005 | 54 | 2005 |

Optimal control of Bose–Einstein condensates in three dimensions JF Mennemann, D Matthes, RM Weishäupl, T Langen New Journal of Physics 17 (11), 113027, 2015 | 45 | 2015 |

Central limit theorem for a class of one-dimensional kinetic equations F Bassetti, L Ladelli, D Matthes Probability theory and related fields 150 (1-2), 77-109, 2011 | 45 | 2011 |

Transport distances and geodesic convexity for systems of degenerate diffusion equations J Zinsl, D Matthes Calculus of Variations and Partial Differential Equations 54 (4), 3397-3438, 2015 | 43 | 2015 |

A Lagrangian scheme for the solution of nonlinear diffusion equations using moving simplex meshes JA Carrillo, B Düring, D Matthes, DS McCormick Journal of Scientific Computing 75, 1463-1499, 2018 | 41 | 2018 |

A convergent Lagrangian discretization for a nonlinear fourth-order equation D Matthes, H Osberger Foundations of Computational Mathematics 17 (1), 73-126, 2017 | 40 | 2017 |

A fully discrete variational scheme for solving nonlinear Fokker--Planck equations in multiple space dimensions O Junge, D Matthes, H Osberger SIAM Journal on Numerical Analysis 55 (1), 419-443, 2017 | 36 | 2017 |

Discrete and smooth orthogonal systems: *C*^{∞}-approximationAI Bobenko, D Matthes, YB Suris International Mathematics Research Notices 2003 (45), 2415-2459, 2003 | 33 | 2003 |

Curves of steepest descent are entropy solutions for a class of degenerate convection–diffusion equations M Di Francesco, D Matthes Calculus of Variations and Partial Differential Equations 50, 199-230, 2014 | 31 | 2014 |

Analysis of a model for wealth redistribution D Matthes, G Toscani Kinetic and related Models 1, 1-22, 2008 | 31 | 2008 |