MARINA: Faster non-convex distributed learning with compression E Gorbunov, KP Burlachenko, Z Li, P Richtárik International Conference on Machine Learning, 3788-3798, 2021 | 126 | 2021 |
Federated optimization algorithms with random reshuffling and gradient compression A Sadiev, G Malinovsky, E Gorbunov, I Sokolov, A Khaled, K Burlachenko, ... arXiv preprint arXiv:2206.07021, 2022 | 27 | 2022 |
Fl_pytorch: optimization research simulator for federated learning K Burlachenko, S Horváth, P Richtárik Proceedings of the 2nd ACM International Workshop on Distributed Machine …, 2021 | 21 | 2021 |
Faster rates for compressed federated learning with client-variance reduction H Zhao, K Burlachenko, Z Li, P Richtárik SIAM Journal on Mathematics of Data Science 6 (1), 154-175, 2024 | 17 | 2024 |
Federated learning with regularized client participation G Malinovsky, S Horváth, K Burlachenko, P Richtárik arXiv preprint arXiv:2302.03662, 2023 | 14 | 2023 |
Personalized federated learning with communication compression EH Bergou, K Burlachenko, A Dutta, P Richtárik arXiv preprint arXiv:2209.05148, 2022 | 7 | 2022 |
Sharper rates and flexible framework for nonconvex SGD with client and data sampling A Tyurin, L Sun, K Burlachenko, P Richtárik arXiv preprint arXiv:2206.02275, 2022 | 7 | 2022 |
PV-Tuning: Beyond Straight-Through Estimation for Extreme LLM Compression V Malinovskii, D Mazur, I Ilin, D Kuznedelev, K Burlachenko, K Yi, ... arXiv preprint arXiv:2405.14852, 2024 | 6 | 2024 |
Personalized federated learning with communication compression E houcine Bergou, KP Burlachenko, A Dutta, P Richtárik Transactions on Machine Learning Research, 2022 | 4 | 2022 |
Federated Learning is Better with Non-Homomorphic Encryption K Burlachenko, A Alrowithi, FA Albalawi, P Richtárik Proceedings of the 4th International Workshop on Distributed Machine …, 2023 | 2 | 2023 |
Error feedback reloaded: From quadratic to arithmetic mean of smoothness constants P Richtárik, E Gasanov, K Burlachenko arXiv preprint arXiv:2402.10774, 2024 | 1 | 2024 |
Lane detection using Fourier based line detector K Burlachenko | 1 | 2013 |
Unlocking FedNL: Self-Contained Compute-Optimized Implementation K Burlachenko, P Richtarik arXiv preprint arXiv:2410.08760, 2024 | | 2024 |
Error Feedback Shines when Features are Rare P Richtarik, E Gasanov, K Burlachenko arXiv preprint arXiv:2305.15264, 2023 | | 2023 |
C++ from 1998 to 2020 K Burlachenko https://github.com/burlachenkok/CPP_from_1998_to_2020, 2022 | | 2022 |
Don't Compress Gradients in Random Reshuffling: Compress Gradient Differences A Sadiev, G Malinovsky, E Gorbunov, I Sokolov, A Khaled, ... The Thirty-eighth Annual Conference on Neural Information Processing Systems, 0 | | |